The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement

نویسندگان

  • Cecilia Persson
  • Alejandro López
  • Hoda Fathali
  • Andreas Hoess
  • Ramiro Rojas
  • Marjam Karlsson Ott
  • Jöns Hilborn
  • Håkan Engqvist
چکیده

With the increasing elderly population an increase in the number of bony fractures associated to age-related diseases such as osteoporosis also follows. The relatively high stiffness of the acrylic bone cements used in these patients has been suggested to give raise to a suboptimal load distribution surrounding the cement in vivo, and hence contribute to clinical complications, such as additional fractures. The aim of this study was to develop a low-modulus bone cement, based on currently used, commercially available poly(methyl methacrylate) (PMMA) cements for vertebroplasty. To this end, acrylate end-functionalized oligo(trimethylene carbonate) (oTMC) was incorporated into the cements, and the resulting compressive mechanical properties were evaluated, as well as the cytotoxic and handling properties of selected formulations. Sixteen wt%oTMC was needed in the vertebroplastic cement Osteopal V to achieve an elastic modulus of 1063 MPa (SD 74), which gave a corresponding compressive strength of 46.1 MPa (SD 1.9). Cement extracts taken at 1 and 12 hours gave a reduced MG-63 cell viability in most cases, while extracts taken at 24 hours had no significant effect on cell behavior. The modification also gave an increase in setting time, from 14.7 min (SD 1.7) to 18.0 min (SD 0.9), and a decrease in maximum polymerization temperature, from 41.5°C (SD 3.4) to 30.7°C (SD 1.4). While further evaluation of other relevant properties, such as injectability and in vivo biocompatibility, remains to be done, the results presented herein are promising in terms of approaching clinically applicable bone cements with a lower stiffness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of unsaturated fatty acid and triglyceride oil addition on the mechanical and antibacterial properties of acrylic bone cements.

Acrylic bone cements have an elastic modulus several times higher than the surrounding trabecular bone. This has been hypothesized to contribute to certain clinical complications. There are indications that the addition of specific fatty acids and triglyceride oils may reduce the elastic modulus of these types of cements. Some of these additives also appear to have inherent antibiotic propertie...

متن کامل

Acrylic antibiotic-loaded bone cement: a basic study

  Abstract   Objective: The aim of this study was to evaluate the efficacy of antibiotic-loaded bone   cement in controlling local infection and in regard to its physical characteristics, elastic   modulus, and tensile strength in-vitro.   Methods: Acrylic bone cement, based on polymethylmethacrylate (PMMA) was   mixed with the powder form of three antibiotics, i.e., gentamicin, tobramycin, and...

متن کامل

The axisymmetric computational study of a femoral component to analysis the effect of titanium alloy and diameter variation.

This work presents a numerical approach in order to predict the influence of implant material stiffness in a femoral component design when submitted in compression. The implant success depends on the transferred load to the neighboring bone. The finite element method can be used to analysis the stress and strain distribution in the femoral component allowing to improve the implant selection. Fo...

متن کامل

Effect of the Configuration of a Bulky Aluminum Initiator on the Structure of Copolymers of L,L-Lactide with Symmetric Comonomer Trimethylene Carbonate

The effect of configuration of an asymmetric bulky initiator 2,2′-[1,1′-binaphtyl-2,2′-diylbis-(nitrylomethilidyne)]diphenoxy aluminum isopropoxide (Ini) on structure of copolymer of asymmetric monomer L,L-lactide (Lac) with symmetric comonomer trimethylene carbonate (Tmc) was studied using polarimetry, dilatometry, Size Exclusion Chromatography (SEC), and Carbon Nuclear Magnetic Resonance (13C...

متن کامل

Evaluation of the Mechanical Properties of the cement treated Cold-in-Place Recycled Asphalt Mixtures

Cold-in-place recycling (CIR) is an environmentally sustainable alternative for preservation of asphalt pavements. A major disadvantage of this practice is the lower strength of the cold-in-place mixtures. Addition of cement into this type of mixture is a method for increasing its bearing capacity. The effect of cement content on the mechanical properties of the cold-in-place recycled asphalt m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016